Evidências da análise espacial na bioenergia florestal para geração eletricidade

Uma revisão

Autores

DOI:

https://doi.org/10.52712/issn.1850-0013-355

Palavras-chave:

energia renovável, bioeletricidade, biomassa

Resumo

Este artigo analisou as evidências da análise espacial na bioenergia florestal para geração de eletricidade, no período de 1980 a 2019. Realizou-se uma análise bibliométrica e revisão sistemática de literatura utilizando os bancos de dados da ISI Web of Knowledge e Scopus. Os resultados mostraram que no período estudado houveram 28 publicações distribuídas em artigos científicos (92,85%) e em artigos de revisão (7,14%). Na análise de conteúdo, destacaram três áreas principais presentes na literatura, foram elas: ambiental, econômico-financeira, e disponibilidade de biomassa. O primeiro estudo foi publicado em 1989, tratando do uso energético biomassa florestal na Zâmbia; todavia observou-se aumento significativo das publicações durante a década de 2010, sendo os Estados Unidos o país com maior contribuição (11 trabalhos). Observou que as análises espaciais podem contribuir como ferramenta de apoio para tomadores de decisão, fornecendo orientação explícita sobre custos, eficiência e localizações ideais para o uso da bioeletricidade florestal.

Downloads

Não há dados estatísticos.

Biografia do Autor

Edvaldo Pereira Santos Júnior, Universidade Federal da Paraíba

Mestre no Programa de Pós-Graduação em Energias Renováveis (PPGER) pela Universidade Federal da Paraíba (UFPB), Brasil, e doutorando no Programa de Pós Graduação em Tecnologias Energéticas e Nucleares (PROTEN) pela Universidade Federal de Pernambuco (UFPE), Brasil.

Rômulo Simões Cezar Menezes, Universidade Federal de Pernambuco

Professor do Departamento de Energia Nuclear da Universidade Federal de Pernambuco (UFPE), Brasil. 

Paulo Rotella Junior, Universidade Federal da Paraíba

Professor do Departamento de Engenharia de Produção da Universidade Federal da Paraíba (UFPB), Brasil.

Flávio José Simioni, Universidade do Estado de Santa Catarina

Professor do Departamento de Engenharia Ambiental e Sanitária da Universidade do Estado de Santa Catarina (UDESC), Brasil.

Magno Vamberto Batista da Silva, Universidade Federal da Paraíba

Professor do Departamento de Economia da Universidade Federal da Paraíba (UFPB), Brasil.

Luiz Moreira Coelho Junior, Universidade Federal da Paraíba

Pofessor do Departamento de Engenharia de Energias Renováveis da Universidade Federal da Paraíba (UFPB), Brasil.

Referências

Akhtari, S., Sowlati, T. & Day, K. (2014). Economic feasibility of utilizing forest biomass in district energy systems–A review. Renewable and sustainable energy reviews, 33, 117-127.

Aruga, K., Murakami, A., Nakahata, C., Yamaguchi, R. & Yoshioka, T. (2011). Discussion on economic and energy balances of forest biomass utilization for small-scale power generation in Kanuma, Tochigi prefecture, Japan. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 32(2), 571-586.

Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global change biology, 9(4), 479-492.

Bezerra, M. C., Gohr, C. F. & Morioka, S. N. (2020). Organizational capabilities towards corporate sustainability benefits: A systematic literature review and an integrative framework proposal. Journal of Cleaner Production, 247, 119114.

Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical engineering journal, 91(2-3), 87-102.

Bridgwater, A. V., Toft, A. J. & Brammer, J. G. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6(3), 181-246.

Bryan, B. A., Ward, J. & Hobbs, T. (2008). An assessment of the economic and environmental potential of biomass production in an agricultural region. Land Use Policy, 25(4), 533-549.

Cambero, C., Sowlati, T., Marinescu, M. & Röser, D. (2015). Strategic optimization of forest residues to bioenergy and biofuel supply chain. International Journal of Energy Research, 39(4), 439-452.

Cardoso, J., Silva, V. & Eusebio, D. (2019). Techno-economic analysis of a biomass gasification power plant dealing with forestry residues blends for electricity production in Portugal. Journal of Cleaner Production, 212, 741-753.

Chidumayo, E. N. (1989). Land use, deforestation and reforestation in the Zambian Copperbelt. Land Degradation & Development, 1(3), 209-216.

Dane, F. C. (1990). Research Methods. Pacific Grove: Brooks/Cole Publishing Company.

Dawson, R. (2011). How Significant Is A Boxplot Outlier? Journal Of Statistics Education, 19(2), 1-13.

De Bellis, N. (2009). Bibliometrics And Citation Analysis: From The Science Citation Index To Cybermetrics. Lanham: Scarecrow Press.

Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion and Management, 42(11), 1357-1378.

Demirbas, M. F., Balat, M. & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746-1760.

Goerndt, M. E., Aguilar, F. X., Miles, P., Shifley, S., Song, N. & Stelzer, H. (2012). Regional assessment of woody biomass physical availability as an energy feedstock for combined combustion in the US northern region. Journal of Forestry, 110(3), 138-148.

Goerndt, M. E., Aguilar, F. X. & Sko, K. (2013). Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern US. Biomass and bioenergy, 59, 348-361.

González, A., Riba, J. R., Puig, R. & Navarro, P. (2015). Review of micro-and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips. Renewable and Sustainable Energy Reviews, 43, 143-155.

Hall, D. O. & Scrase, J. I. (1998). Will biomass be the environmentally friendly fuel of the future? Biomass and Bioenergy, 15(4-5), 357-367.

Hernández, U., Jaeger, D. & Islas Samperio, J. (2018). Evaluating economic alternatives for wood energy supply based on stochastic simulation. Sustainability, 10(4), 1161.

Hu, Q., Yang, H., Xu, H., Wu, Z., Lim, C. J., Bi, X. T. & Chen, H. (2018). Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy Conversion and Management, 161, 205-214.

Ingrao, C., Bacenetti, J., Bezama, A., Blok, V., Goglio, P., Koukios, E. G. & Huisingh, D. (2018). The potential roles of bio-economy in the transition to equitable, sustainable, post fossil-carbon societies: Findings from this virtual special issue. Journal of Cleaner Production, 204, 471-488.

International Energy Agency (2020). Data And Statistics 2020. Disponível em: https://www.Iea.org/Data-And-Statistics.

Jiang, W., Searle, S. & Siddiqui, S. (2017). Analysis of the global wood‐chip trade's response to renewable energy policies using a spatial price equilibrium model. Biofuels, bioproducts and biorefining, 11(3), 505-520.

Jin, E. & Sutherland, J. W. (2018). An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomass and Bioenergy, 119, 10-21.

Kalt, G., Mayer, A., Theurl, M. C., Lauk, C., Erb, K. H. & Haberl, H. (2019). Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?. GCB Bioenergy, 11(11), 1283-1297.

Kumar, L., Sinha, P., Taylor, S. & Alqurashi, A. F. (2015). Review of the use of remote sensing for biomass estimation to support renewable energy generation. Journal of Applied Remote Sensing, 9(1), 097696.

Lewtas, J. (2007). Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research/Reviews in Mutation Research, 636(1-3), 95-133.

Linde, K. & Willich, S. N. (2003). How objective are systematic reviews? Differences between reviews on complementary medicine. Journal of the Royal Society of Medicine, 96(1), 17-22.

Liu, Z., Johnson, T. G. & Altman, I. (2016). The moderating role of biomass availability in biopower co-firing—A sensitivity analysis. Journal of cleaner production, 135, 523-532.

Lundmark, R., Athanassiadis, D. & Wetterlund, E. (2015). Supply assessment of forest biomass–a bottom-up approach for Sweden. Biomass and Bioenergy, 75, 213-226.

Mazaheri, N., Akbarzadeh, A. H., Madadian, E. & Lefsrud, M. (2019). Systematic review of research guidelines for numerical simulation of biomass gasification for bioenergy production. Energy Conversion and Management, 183, 671-688.

Mesfun, S., Leduc, S., Patrizio, P., Wetterlund, E., Mendoza-Ponce, A., Lammens, T. & Kraxner, F. (2018). Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies. Energy, 164, 676-693.

Mohan, D., Pittman Jr, C. U. & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20(3), 848-889.

Oliver, A. & Khanna, M. (2017). Demand for biomass to meet renewable energy targets in the United States: Implications for land use. Gcb Bioenergy, 9(9), 1476-1488.

Openshaw, K. (2010). Biomass energy: employment generation and its contribution to poverty alleviation. Biomass and bioenergy, 34(3), 365-378.

Paredes-Sánchez, J. P., López-Ochoa, L. M., López-González, L. M., Las-Heras-Casas, J. & Xiberta-Bernat, J. (2019). Evolution and perspectives of the bioenergy applications in Spain. Journal of cleaner production, 213, 553-568.

Pokharel, R., Grala, R. K., Grebner, D. L. & Cooke, W. H. (2019). Mill willingness to use logging residues to produce electricity: A spatial logistic regression approach. Forest Science, 65(3), 277-288.

Pradhan, P., Arora, A. & Mahajani, S. M. (2018). Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for sustainable development, 43, 1-14.

Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences, 117(G4).

Ranius, T., Hämäläinen, A., Egnell, G., Olsson, B., Eklöf, K., Stendahl, J. & Rudolphi, J.(2018). The Effects Of Logging Residue Extraction For Energy On Ecosystem Services And Biodiversity: A Synthesis. Journal Of Environmental Management, 209, 409-425.

Raviv, O., Broitman, D., Ayalon, O. & Kan, I. (2018). A regional optimization model for waste-to-energy generation using agricultural vegetative residuals. Waste Management, 73, 546-555.

Romero, C. W. D. S., Berni, M. D., Figueiredo, G. K. D. A., Franco, T. T. & Lamparelli, R. A. C. (2019). Assessment of agricultural biomass residues to replace fossil fuel and hydroelectric power energy: A spatial approach. Energy Science & Engineering, 7(6), 2287-2305.

Ruiz, P., Nijs, W., Tarvydas, D., Sgobbi, A., Zucker, A., Pilli, R. & Thrän, D. (2019). ENSPRESO-an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Reviews, 26, 100379.

Saberi, M. K., Sahebi, S. & Zerehsaz, M. (2020). Visualization of the Koomesh journal between 2006 and 2017: A bibliometric study. Koomesh, 22(1), 1-9.

Sadhukhan, J., Martinez-Hernandez, E., Murphy, R. J., Ng, D. K., Hassim, M. H., Ng, K. S. & Andiappan, V. (2018). Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia. Renewable and Sustainable Energy Reviews, 81, 1966-1987.

Sánchez-García, S., Canga, E., Tolosana, E. & Majada, J. (2015). A spatial analysis of woodfuel based on WISDOM GIS methodology: Multiscale approach in Northern Spain. Applied Energy, 144, 193-203.

Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G. & Schmid, E. (2010). Potential of biomass‐fired combined heat and power plants considering the spatial distribution of biomass supply and heat demand. International Journal of Energy Research, 34(11), 970-985.

Smyth, C. E., Smiley, B. P., Magnan, M., Birdsey, R., Dugan, A. J., Olguin, M. & Kurz, W. A. (2018). Climate change mitigation in Canada’s forest sector: a spatially explicit case study for two regions. Carbon balance and management, 13(1), 1-12.

Solomon, B. & Luzadis, V. A. (2008). Renewable energy from forest resources in the United States. Routledge.

Stasko, T. H., Conrado, R. J., Wankerl, A., Labatut, R., Tasseff, R., Mannion, J. T. & Knott, G. (2011). Mapping woody-biomass supply costs using forest inventory and competing industry data. Biomass and Bioenergy, 35(1), 263-271.

Steubing, B., Ballmer, I., Gassner, M., Gerber, L., Pampuri, L., Bischof, S. & Zah, R. (2014). Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains. Renewable Energy, 61, 57-68.

Sun, Y., Wang, R., Liu, J., Xiao, L., Lin, Y. & Kao, W. (2013). Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China. Applied energy, 106, 391-406.

Tillman, D. A. (2000). Biomass cofiring: the technology, the experience, the combustion consequences. Biomass and bioenergy, 19(6), 365-384.

Tranfield, D., Denyer, D. & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222.

Upreti, B. R., & van der Horst, D. (2004). National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant. Biomass and Bioenergy, 26(1), 61-69.

Van Raan, A. F. J. (2005). For your citations only? Hot topics in bibliometric analysis. Measurement: interdisciplinary research and perspectives, 3(1), 50-62.

Verón, S. R., Jobbágy, E. G., Di Bella, C. M., Paruelo, J. M. & Jackson, R. B. (2012). Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy, 4(6), 634-641.

Viccaro, M., Cozzi, M., Caniani, D., Masi, S., Mancini, I. M., Caivano, M. & Romano, S. (2017). Wastewater reuse: An economic perspective to identify suitable areas for poplar vegetation filter systems for energy production. Sustainability, 9(12), 2161.

Wang, Q. & Waltman, L. (2016). Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. Journal of informetrics, 10(2), 347-364.

Wang, S. & Luo, K. (2018). Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications. Science of the Total Environment, 610, 1047-1056.

White, M. D. & Marsh, E. E. (2006). Content analysis: A flexible methodology. Library Trends, 55(1), 22-45.

Downloads

Publicado

2022-12-23

Como Citar

Pereira Santos Júnior, E., Simões Cezar Menezes, R., Rotella Junior, P., Simioni, F. J., Vamberto Batista da Silva, M., & Moreira Coelho Junior, L. (2022). Evidências da análise espacial na bioenergia florestal para geração eletricidade: Uma revisão. Revista Iberoamericana De Ciencia, Tecnología Y Sociedad - CTS, 18(54), 175–198. https://doi.org/10.52712/issn.1850-0013-355

Edição

Seção

Artigos