Digitalização vs. sustentabilidade ambiental
Uma análise crítica dos veículos elétricos conectados no território espanhol
Palavras-chave:
automovéis elétricos, governança ambiental, dupla transição, inovaçãoResumo
Nas políticas públicas da Comissão Europeia, as tecnologias digitais são vistas como fundamentais para enfrentar desafios ambientais. Neste artigo, analisamos criticamente como a política da dupla transição ecológica e digital é implementada no território espanhol, tomando como estudo de caso o Projeto Estratégico para a Recuperação e Transformação Econômica do veículo elétrico conectado. A análise se baseia em um mapeamento das tecnologias digitais, suas funções, domínios de atuação, benefícios esperados e empresas beneficiárias dos fundos europeus destinados ao veículo elétrico e à digitalização. Os resultados revelam que: i) os benefícios buscados são, em primeiro lugar, econômicos, ficando a sustentabilidade ambiental subordinada ao interesse econômico; ii) aposta-se nos veículos elétricos sob a suposição de que são sustentáveis, enquanto as tecnologias digitais desenvolvidas não esclarecem muitas incertezas sobre a sustentabilidade desses veículos; iii) a governança ambiental é redirecionada para o desenvolvimento de soluções tecnológicas e digitais, excluindo debates mais amplos sobre a sustentabilidade do setor de transporte.
Downloads
Referências
Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environmental Research Letters, 13(12), 123001. DOI: https://doi.org/10.1088/1748-9326/aae9b1.
Altech (2022). Los socios de Future: Fast Forward registran el proyecto al PERTE VEC. Recuperado de: https://altech.es/los-socios-de-future-fast-forward-registran-el-proyecto-al-perte-vec/.
Andersen, A. D., Frenken, K., Galaz, V., Kern, F., Klerkx, L., Mouthaan, M., Piscicelli, L., Schor, J. B. & Vaskelainen, T. (2021). On digitalization and sustainability transitions. Environmental Innovation and Societal Transitions, 41, 96–98. DOI: https://doi.org/https://doi.org/10.1016/j.eist.2021.09.013.
Anderson, J. & Anderson, C. D. (2005). Electric and Hybrid Cars: A History. McFarland & Co.
Banza Lubaba Nkulu, C., Casas, L., Haufroid, V., De Putter, T., Saenen, N. D., Kayembe-Kitenge, T., Musa Obadia, P., Kyanika Wa Mukoma, D., Lunda Ilunga, J.-M., Nawrot, T. S., Luboya Numbi, O., Smolders, E. & Nemery, B. (2018). Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability, 1(9), 495–504. DOI: https://doi.org/10.1038/s41893-018-0139-4.
Buekers, J., Van Holderbeke, M., Bierkens, J. & Int Panis, L. (2014). Health and environmental benefits related to electric vehicle introduction in EU countries. Transportation Research Part D: Transport and Environment, 33, 26-38. DOI: https://doi.org/https://doi.org/10.1016/j.trd.2014.09.002.
Burkert, A. (2019). Electric Vehicles - Shaking up the German Industry. ATZ Worldwide, 121(10), 8-13. DOI: https://doi.org/10.1007/s38311-019-0117-0.
Canis, B. (2019). Electrification May Disrupt the Automotive Supply Chain. Recuperado de: https://crsreports.congress.gov/product/pdf/R/R46231.
Chinchilla, E. J. S. & Allende, J. S. (2017). Riesgos de ciberseguridad en las empresas. Tecnologia y Desarrollo, 15.
Chohan, U. (2022). Blockchain and the extractive industries: cobalt case study. SSRN Electron. DOI: https://doi.org/https://dx.doi.org/10.2139/ssrn.3138271.
Chung, D., Elgqvist, E. & Santhanagopalan, S. (2016). Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations. National Renewable Energy Lab (NREL). DOI: https://doi.org/10.2172/1247459.
Comisión Europea (2010). Europa 2020. Una estrategia para un crecimiento inteligente, sostenible e integrador. COM(2010) 2020 final.
Comisión Europea (2015). Cerrar el círculo: un plan de acción de la UE para la economía circular. COM(2015) 614 final.
Comisión Europea (2016a). Acelerar la innovación en energías limpias. COM(2016) 763 final.
Comisión Europea (2016b). Digitalización de la industria europea. Aprovechar todas las ventajas de un mercado único digital. COM(2016) 180 final.
Comisión Europea (2018). En ruta hacia la movilidad automatizada: estrategia de la UE para la movilidad del futuro. COM(2018) 283 final.
Comisión Europea (2019a). El Pacto Verde Europeo. COM(2019) 640 final.
Comisión Europea (2019b). Estrategia de movilidad sostenible e inteligente: encauzar el transporte europeo de cara al futuro. COM(2020) 789 final.
Comisión Europea (2020). Una nueva estrategia industrial para Europa. COM(2020) 102 final.
Comisión Europea (2021). Actualizando la Nueva Estrategia industrial de 2020. COM(2021) 350 final.
CSIC (2023). El CSIC participa en la mayor alianza de la automoción española para impulsar el coche eléctrico. Consejo Superior de Investigaciones Científicas. Recuperado de: https://www.csic.es/es/actualidad-del-csic/el-csic-participa-en-la-mayor-alianza-de-la-automocion-espanola-para-impulsar-el-coche-electrico.
Deloitte LLP (2019). New market. New entrants. New challenges. Battery Electric Vehicles. Recuperado de: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/manufacturing/deloitte-uk-battery-electric-vehicles.pdf.
Di Felice, L. J., Renner, A. & Giampietro, M. (2021). Why should the EU implement electric vehicles? Viewing the relationship between evidence and dominant policy solutions through the lens of complexity. Environmental Science & Policy, 123, 1-10. DOI: https://doi.org/https://doi.org/10.1016/j.envsci.2021.05.002.
Dolganova, I., Rödl, A., Bach, V., Kaltschmitt, M. & Finkbeiner, M. (2020). A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use. Resources, 9(3), 32. DOI: https://doi.org/10.3390/resources9030032.
Draghi, M. (2024). The future of European competitiveness. Recuperado de: https://commission.europa.eu/topics/strengthening-european-competitiveness/eu-competitiveness-looking-ahead_en.
Eberhard, M. & Tarpenning, M. (2006). The 21st Century Electric Car Tesla Motors. Tesla Motors, 17, 1-10.
EEA. (2018). Electric Vehicles From Life Cycle and Circular Economy Perspectives. Recuperado de: https://www.eea.europa.eu/en/analysis/publications/electric-vehicles-from-life-cycle.
Electrical Contractors Association (2019). Powering a New Value Chain in the Automotive Sector: the Job Potential of Transport Electrification. Recuperado de: https://europe-on.org/wp-content/uploads/2020/02/EuropeOn-Powering-a-new-value-chain-in-the-automotive-sector-the-job-potential-of-transport-electrification.pdf.
Ellingsen, L. A., Majeau‐Bettez, G., Singh, B., Srivastava, A. K., Valøen, L. O. & Strømman, A. H. (2014). Life Cycle Assessment of a Lithium‐Ion Battery Vehicle Pack. Journal of Industrial Ecology, 18(1), 113-124. DOI: https://doi.org/10.1111/jiec.12072.
Eurostat (2024). Energy balance flow for Spain 2022. Recuperado de: https://ec.europa.eu/eurostat/cache/sankey/energy/sankey.html?geos=ES&year=2022&unit=KTOE&fuels=TOTAL&highlight=_&nodeDisagg=1111111111111&flowDisagg=false&translateX=340.63597773486526&translateY=122.60179721339532&scale=0.5&language=EN.
Faber, B., Krause, B. & Sánchez de la Sierra, R. (2017). Artisanal Mining, Livelihoods, and Child Labor in the Cobalt Supply Chain of the Democratic Republic of Congo. Working Paper Series qt17m9g4wm.
FEI & IND+I (2020). Los pilares de un futuro más próspero y sostenible. El desarrollo de España en el tiempo de después. Recuperado de: https://foroempresasinnovadoras.com/wp-content/uploads/2020/06/20200531-DOCUMENTO-FEI-INDI.pdf.
Flexer, V., Baspineiro, C. F. & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment, 639, 1188-1204. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.05.223.
Fraunhofer IAO (2020). The Changing Face of the Automotive Industry – Employment Prospects in 2030. Fraunhofer Institute for Industrial Engineering.
Fu, C. & Barbieri, R. (2024). China’s Auto Giant BYD Sells More Electric Cars And Hybrids Than Ever. The New York Times.
Funtowicz, S. & Hidalgo, C. (2024). Epistemología política: ciencia con la gente. Revista Iberoamericana de Ciencia, Tecnología y Sociedad -CTS, 19(55), 215-228. DOI: https://doi.org/10.52712/issn.1850-0013-454.
Future: Fast Forward (2023). Agrupación F3. Recuperado de: https://www.futurefastforward.es/agrupacion-f3/.
Giampietro, M., Mayumi, K. & Şorman, A. (2013). Energy Analysis for a Sustainable Future Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism. Routledge.
Girardi, P., Gargiulo, A. & Brambilla, P. C. (2015). A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. The International Journal of Life Cycle Assessment, 20(8), 1127-1142. DOI: https://doi.org/10.1007/s11367-015-0903-x.
Grabiner, J. V. (1984). Artificial intelligence: Debates about its use and abuse. Historia Mathematica, 11(4), 471-480. DOI: https://doi.org/https://doi.org/10.1016/0315-0860(84)90029-6.
Gutiérrez, R. T. (2019). La fabricación abierta: ¿un camino alternativo a la industria 4.0? Revista Iberoamericana de Ciencia, Tecnología y Sociedad -CTS, 14(41), 263–285. Recuperado de: https://ojs.revistacts.net/index.php/CTS/article/view/121.
Hamilton, J. (2011). Careers in Electric Vehicles. Recuperado de: https://www.bls.gov/green/electric_vehicles/.
Helmers, E. & Marx, P. (2012). Electric cars: technical characteristics and environmental impacts. Environmental Sciences Europe, 24(1), 14. DOI : https://doi.org/10.1186/2190-4715-24-14.
Holland, S. P., Mansur, E. T., Muller, N. Z. & Yates, A. J. (2016). Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors. American Economic Review, 106(12), 3700–3729. DOI: https://doi.org/10.1257/aer.20150897.
Holtsmark, B., & Skonhoft, A. (2014). The Norwegian support and subsidy policy of electric cars. Should it be adopted by other countries? Environmental Science & Policy, 42, 160-168. DOI: https://doi.org/https://doi.org/10.1016/j.envsci.2014.06.006.
Jochem, P., Doll, C. & Fichtner, W. (2016). External costs of electric vehicles. Transportation Research Part D: Transport and Environment, 42, 60-76. DOI: https://doi.org/https://doi.org/10.1016/j.trd.2015.09.022.
Jones, S. J. (2019). If electric cars are the answer, what was the question? British Medical Bulletin, 129(1), 13-23. DOI: https://doi.org/10.1093/bmb/ldy044.
Kane, M. (2019). 91% Of Lithium For Lithium-Ion Batteries Comes From Three CountriesLithium For Lithium-Ion Batteries Comes From Three Countries. InsideEvs Newsletter. Recuperado de: https://insideevs.com/news/372133/91-of-lithium-three-countries/.
Kloppenburg, S., Gupta, A., Kruk, S. R. L., Makris, S., Bergsvik, R., Korenhof, P., Solman, H. & Toonen, H. M. (2022). Scrutinizing environmental governance in a digital age: New ways of seeing, participating, and intervening. One Earth, 5(3), 232–241. DOI: https://doi.org/https://doi.org/10.1016/j.oneear.2022.02.004.
Kolk, A. & Ciulli, F. (2020). The potential of sustainability-oriented digital platform multinationals: A comment on the transitions research agenda. Environmental Innovation and Societal Transitions, 34, 355-358. DOI: https://doi.org/https://doi.org/10.1016/j.eist.2019.12.008.
Kovacic, Z., Casañas, C. G., Argüelles, L., Serrano, P. Y., Ribera-Fumaz, R., Prause, L. & March, H. (2024). The twin green and digital transition: High-level policy or science fiction? Environment and Planning E: Nature and Space, 0(0), 25148486241258050. DOI: https://doi.org/10.1177/25148486241258046.
Kovacic, Z., Rommetveit, K. & Strand, R. (2020). Report of the quality of the assessment of technical innovations. MAGIC (H2020–GA 689669). Project Deliverable 6.2.
Lave, L. B., Hendrickson, C. T. & McMichael, F. C. (1995). Environmental implications of electric cars. Science, 268(5213), 993–995. DOI: https://doi.org/10.1126/science.268.5213.993.
Lebedeva, N., Di Persio, F. & Boon-Brett, L. (2017). Lithium ion battery value chain and related opportunities for Europe. European Commission. DOI: https://doi.org/10.2760/6060.
Mäkitie, T., Hanson, J., Damman, S. & Wardeberg, M. (2023). Digital innovation’s contribution to sustainability transitions. Technology in Society, 73, 102255. DOI: https://doi.org/https://doi.org/10.1016/j.techsoc.2023.102255.
Ministerio de Industria y Turismo (2021). PERTE para el desarrollo del Vehículo Eléctrico y Conectado. Memoria descriptiva. Gobierno de España. Recuperado de: https://www.mintur.gob.es/es-es/recuperacion-transformacion-resiliencia/perte/memoria-descriptiva-perte-vec.pdf.
Ministerio de Industria y Turismo (2022). Orden ICT/209/2022, de 17 de marzo, por la que se efectúa la convocatoria correspondiente al año 2022. BOE, (66). Documento BOE-A-2022-4341 (35454–35538). Recuperado de: https://www.boe.es/eli/es/o/2022/03/17/ict209.
Ministerio de Industria y Turismo (2023). Resolución de concesión de apoyo financiero actuaciones integrales cadena vehículo eléctrico - 2022. Recuperado de: https://www.mintur.gob.es/PortalAyudas/PERTE-VEC/Concesion/2022/Documents/Resolucion%20global%20firmada.pdf.
Nofer, M., Gomber, P., Hinz, O. & Schiereck, D. (2017). Blockchain. Business & Information Systems Engineering, 59(3), 183-187. DOI: https://doi.org/10.1007/s12599-017-0467-3.
Oman, H. (2002). Electric car progress. IEEE Aerospace and Electronic Systems Magazine, 17(6), 30-35. DOI: https://doi.org/10.1109/MAES.2002.1010119.
Ortar, N. & Ryghaug, M. (2019). Should All Cars Be Electric by 2025? The Electric Car Debate in Europe. Sustainability, 11(7). DOI: https://doi.org/10.3390/su11071868.
Piscicelli, L. (2023). The sustainability impact of a digital circular economy. Current Opinion in Environmental Sustainability, 61, 101251. DOI: https://doi.org/https://doi.org/10.1016/j.cosust.2022.101251.
Poel, I. van de. (2020). Three philosophical perspectives on the relation between technology and society, and how they affect the current debate about artificial intelligence. Human Affairs, 30(4), 499–511. DOI: https://doi.org/doi:10.1515/humaff-2020-0042.
Prause, L., Hackfort, S. & Lindgren, M. (2021). Digitalization and the third food regime. Agriculture and Human Values, 38(3), 641-655. DOI: https://doi.org/10.1007/s10460-020-10161-2.
Rozo-García, F. (2020). Revisión de las tecnologías presentes en la industria 4.0. UIS Ingenierías, 19(2), 177-192. DOI: https://doi.org/https://doi.org/10.18273/revuin.v19n2-2020019.
Ryghaug, M. & Toftaker, M. (2014). A Transformative Practice? Meaning, Competence, and Material Aspects of Driving Electric Cars in Norway. Nature and Culture, 9(2), 146-163. DOI: https://doi.org/10.3167/nc.2014.090203.
Sareen, S. & Haarstad, H. (2021). Digitalization as a driver of transformative environmental innovation. Environmental Innovation and Societal Transitions, 41, 93-95. DOI: https://doi.org/https://doi.org/10.1016/j.eist.2021.09.016.
Schott, B., Püttner, A. & Müller, M. (2015). 3 - The market for battery electric vehicles. In B. Scrosati, J. Garche & W. Tillmetz (Eds.), Advances in Battery Technologies for Electric Vehicles (35–54). Woodhead Publishing. DOI: https://doi.org/https://doi.org/10.1016/B978-1-78242-377-5.00003-0.
Smil, V. (2016). Examining energy transitions: A dozen insights based on performance. Energy Research & Social Science, 22, 194–197. DOI: https://doi.org/10.1016/j.erss.2016.08.017.
Sovacool, B. K., Axsen, J. & Kempton, W. (2017). The Future Promise of Vehicle-to-Grid (V2G) Integration: A Sociotechnical Review and Research Agenda. Annual Review of Environment and Resources, 42(1), 377-406. DOI: https://doi.org/10.1146/annurev-environ-030117-020220.
Temper, L., Del Bene, D. & Martinez-Alier, J. (2015). Mapping the frontiers and front lines of global environmental justice: the EJAtlas. Journal of Political Ecology, 22(1). DOI: https://doi.org/10.2458/v22i1.21108.
Transport and Environment (2017). How Will Electric Vehicle Transition Impact EU Jobs? In European Federation for Transport and Environment. Recuperado de: https://www.transportenvironment.org/articles/how-will-electric-vehicle-transition-impact-eu-jobs.
Tsurukawa, N., Prakash, S. & Manhart, A. (2011). Social Impacts of Artisanal Cobalt Mining in Katanga, Democratic Republic of Congo. Öko-Institut e.V.
Van Mierlo, J. & Maggetto, G. (2007). Fuel Cell or Battery: Electric Cars are the Future. Fuel Cells, 7(2), 165–173. DOI: https://doi.org/10.1002/fuce.200600052.
Westbrook, M. H. (2001). The Electric Car: Development and future of battery, hybrid and fuel-cell cars, 38. Institution of Electrical Engineers.
Wilberforce, T., El-Hassan, Z., Khatib, F. N., Al Makky, A., Baroutaji, A., Carton, J. G. & Olabi, A. G. (2017). Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy, 42(40), 25695–25734. DOI: https://doi.org/https://doi.org/10.1016/j.ijhydene.2017.07.054.
Zajko, M. (2022). Artificial intelligence, algorithms, and social inequality: Sociological contributions to contemporary debates. Sociology Compass, 16(3), e12962. DOI: https://doi.org/https://doi.org/10.1111/soc4.12962.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 CC Attribution 4.0

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Todas os números de CTS e seus artigos individuais estão sob uma licença CC-BY.
Desde 2007, a CTS proporciona acesso livre, aberto e gratuito a todos seus conteúdos, incluídos o arquivo completo da edição quadrimestral e os diversos produtos apresentados na plataforma eletrônica. Esta decisão é baseada no entendimento de que fornecer acesso livre aos materiais publicados ajuda a ter uma maior e melhor troca de conhecimentos.
Por sua vez, em se tratando da edição quadrimestral, a revista permite aos repositórios institucionais e temáticos, bem como aos sites pessoais, o autoarquivo dos artigos na versão post-print ou versão editorial, logo após da publicação da versão definitiva de cada número e sob a condição de incorporar ao autoarquivo um link direcionado à fonte original.